博客
关于我
Weekly Contest 133
阅读量:426 次
发布时间:2019-03-06

本文共 7511 字,大约阅读时间需要 25 分钟。

1030. Matrix Cells in Distance Order

We are given a matrix with R rows and C columns has cells with integer coordinates (r, c), where 0 <= r < R and 0 <= c < C.

Additionally, we are given a cell in that matrix with coordinates (r0, c0).

Return the coordinates of all cells in the matrix, sorted by their distance from (r0, c0) from smallest distance to largest distance.  Here, the distance between two cells (r1, c1) and (r2, c2) is the Manhattan distance, |r1 - r2| + |c1 - c2|.  (You may return the answer in any order that satisfies this condition.)

 

Example 1:

Input: R = 1, C = 2, r0 = 0, c0 = 0Output: [[0,0],[0,1]]Explanation: The distances from (r0, c0) to other cells are: [0,1]

Example 2:

Input: R = 2, C = 2, r0 = 0, c0 = 1Output: [[0,1],[0,0],[1,1],[1,0]]Explanation: The distances from (r0, c0) to other cells are: [0,1,1,2]The answer [[0,1],[1,1],[0,0],[1,0]] would also be accepted as correct.

Example 3:

Input: R = 2, C = 3, r0 = 1, c0 = 2Output: [[1,2],[0,2],[1,1],[0,1],[1,0],[0,0]]Explanation: The distances from (r0, c0) to other cells are: [0,1,1,2,2,3]There are other answers that would also be accepted as correct, such as [[1,2],[1,1],[0,2],[1,0],[0,1],[0,0]].

 

Note:

  1. 1 <= R <= 100
  2. 1 <= C <= 100
  3. 0 <= r0 < R
  4. 0 <= c0 < C

 

Approach #1: 

class Solution {public:    vector
> allCellsDistOrder(int R, int C, int r0, int c0) { map
>> m; for (int i = 0; i < R; ++i) { for (int j = 0; j < C; ++j) { int dis = abs(i - r0) + abs(j - c0); m[dis].push_back({i, j}); } } int index = 0; vector
> ret = vector(R*C, vector
(2)); map
>>::iterator it; for (it = m.begin(); it != m.end(); ++it) { vector
> temp = it->second; for (int i = 0; i < temp.size(); ++i) { ret[index][0] = temp[i].first; ret[index][1] = temp[i].second; index++; } } return ret; }};

  

1029. Two City Scheduling

There are 2N people a company is planning to interview. The cost of flying the i-th person to city A is costs[i][0], and the cost of flying the i-th person to city B is costs[i][1].

Return the minimum cost to fly every person to a city such that exactly N people arrive in each city.

 

Example 1:

Input: [[10,20],[30,200],[400,50],[30,20]]Output: 110Explanation: The first person goes to city A for a cost of 10.The second person goes to city A for a cost of 30.The third person goes to city B for a cost of 50.The fourth person goes to city B for a cost of 20.The total minimum cost is 10 + 30 + 50 + 20 = 110 to have half the people interviewing in each city.

 

Note:

  1. 1 <= costs.length <= 100
  2. It is guaranteed that costs.length is even.
  3. 1 <= costs[i][0], costs[i][1] <= 1000

 

Approach #1: 

class Solution {    public int twoCitySchedCost(int[][] costs) {        int N = costs.length / 2;        int[][] dp = new int[N+1][N+1];        for (int i = 1; i <= N; ++i) {            dp[i][0] = dp[i-1][0] + costs[i-1][0];        }        for (int i = 1; i <= N; ++i) {            dp[0][i] = dp[0][i-1] + costs[i-1][1];        }        for (int i = 1; i <= N; ++i) {            for (int j = 1; j <= N; ++j) {                dp[i][j] = Math.min(dp[i-1][j] + costs[i+j-1][0], dp[i][j-1] + costs[i+j-1][1]);            }        }        return dp[N][N];    }}

  

1031. Maximum Sum of Two Non-Overlapping Subarrays

Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.)

Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either:

  • 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or
  • 0 <= j < j + M - 1 < i < i + L - 1 < A.length.

 

Example 1:

Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2Output: 20Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2.

Example 2:

Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2Output: 29Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2.

Example 3:

Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3Output: 31Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.

 

Note:

  1. L >= 1
  2. M >= 1
  3. L + M <= A.length <= 1000
  4. 0 <= A[i] <= 1000

 

Approach #1:

class Solution {    public int maxSumTwoNoOverlap(int[] A, int L, int M) {        for (int i = 1; i < A.length; ++i) {            A[i] += A[i-1];        }        int res = A[L+M-1], Lmax = A[L-1], Mmax = A[M-1];        for (int i = L + M; i < A.length; ++i) {            Lmax = Math.max(Lmax, A[i-M] - A[i-M-L]);            Mmax = Math.max(Mmax, A[i-L] - A[i-M-L]);            res = Math.max(res, Math.max(Lmax + A[i] - A[i-M], Mmax + A[i] - A[i-L]));        }                return res;    }}

  

1032. Stream of Characters

Implement the StreamChecker class as follows:

  • StreamChecker(words): Constructor, init the data structure with the given words.
  • query(letter): returns true if and only if for some k >= 1, the last k characters queried (in order from oldest to newest, including this letter just queried) spell one of the words in the given list.

 

Example:

StreamChecker streamChecker = new StreamChecker(["cd","f","kl"]); // init the dictionary.streamChecker.query('a');          // return falsestreamChecker.query('b');          // return falsestreamChecker.query('c');          // return falsestreamChecker.query('d');          // return true, because 'cd' is in the wordliststreamChecker.query('e');          // return falsestreamChecker.query('f');          // return true, because 'f' is in the wordliststreamChecker.query('g');          // return falsestreamChecker.query('h');          // return falsestreamChecker.query('i');          // return falsestreamChecker.query('j');          // return falsestreamChecker.query('k');          // return falsestreamChecker.query('l');          // return true, because 'kl' is in the wordlist

 

Note:

  • 1 <= words.length <= 2000
  • 1 <= words[i].length <= 2000
  • Words will only consist of lowercase English letters.
  • Queries will only consist of lowercase English letters.
  • The number of queries is at most 40000.

 

Approach #1:

class StreamChecker {    public class TriNode {        boolean isEnd = false;        TriNode[] next = new TriNode[26];    }        TriNode root = new TriNode();    StringBuilder buf = new StringBuilder();        void insert(String word) {        TriNode temp = root;        for (int i = 0; i < word.length(); ++i) {            char ch = word.charAt(word.length()-i-1);            if (temp.next[ch-'a'] == null) temp.next[ch-'a'] = new TriNode();            temp = temp.next[ch-'a'];        }        temp.isEnd = true;    }        public StreamChecker(String[] words) {        for (String word : words) {            insert(word);        }    }        public boolean query(char letter) {        buf.append(letter);        // System.out.println(buf.toString());        TriNode p = root;        for (int i = buf.length() - 1; i >= 0; --i) {            char ch = buf.charAt(i);            p = p.next[ch-'a'];            if (p == null) return false;            if (p.isEnd) return true;        }        return false;    }}/** * Your StreamChecker object will be instantiated and called as such: * StreamChecker obj = new StreamChecker(words); * boolean param_1 = obj.query(letter); */

  

 

转载地址:http://iftuz.baihongyu.com/

你可能感兴趣的文章
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_根据binlog实现update数据实时同步_实际操作05---大数据之Nifi工作笔记0044
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_根据binlog实现数据实时delete同步_实际操作04---大数据之Nifi工作笔记0043
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置binlog_使用处理器抓取binlog数据_实际操作01---大数据之Nifi工作笔记0040
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_实现数据插入数据到目标数据库_实际操作03---大数据之Nifi工作笔记0042
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_生成插入Sql语句_实际操作02---大数据之Nifi工作笔记0041
查看>>
NIFI从MySql中离线读取数据再导入到MySql中_03_来吧用NIFI实现_数据分页获取功能---大数据之Nifi工作笔记0038
查看>>
NIFI从MySql中离线读取数据再导入到MySql中_不带分页处理_01_QueryDatabaseTable获取数据_原0036---大数据之Nifi工作笔记0064
查看>>
NIFI从MySql中离线读取数据再导入到MySql中_无分页功能_02_转换数据_分割数据_提取JSON数据_替换拼接SQL_添加分页---大数据之Nifi工作笔记0037
查看>>
NIFI从Oracle11G同步数据到Mysql_亲测可用_解决数据重复_数据跟源表不一致的问题---大数据之Nifi工作笔记0065
查看>>
NIFI从PostGresql中离线读取数据再导入到MySql中_带有数据分页获取功能_不带分页不能用_NIFI资料太少了---大数据之Nifi工作笔记0039
查看>>
nifi使用过程-常见问题-以及入门总结---大数据之Nifi工作笔记0012
查看>>
NIFI分页获取Mysql数据_导入到Hbase中_并可通过phoenix客户端查询_含金量很高的一篇_搞了好久_实际操作05---大数据之Nifi工作笔记0045
查看>>
NIFI分页获取Postgresql数据到Hbase中_实际操作---大数据之Nifi工作笔记0049
查看>>
NIFI同步MySql数据_到SqlServer_错误_驱动程序无法通过使用安全套接字层(SSL)加密与SQL Server_Navicat连接SqlServer---大数据之Nifi工作笔记0047
查看>>
NIFI同步MySql数据源数据_到原始库hbase_同时对数据进行实时分析处理_同步到清洗库_实际操作06---大数据之Nifi工作笔记0046
查看>>
Nifi同步过程中报错create_time字段找不到_实际目标表和源表中没有这个字段---大数据之Nifi工作笔记0066
查看>>
【Flink】Flink 1.9 版本 web UI 突然没有日志
查看>>
NIFI大数据进阶_FlowFile拓扑_对FlowFile内容和属性的修改删除添加_介绍和描述_以及实际操作---大数据之Nifi工作笔记0023
查看>>
NIFI大数据进阶_FlowFile生成器_GenerateFlowFile处理器_ReplaceText处理器_处理器介绍_处理过程说明---大数据之Nifi工作笔记0019
查看>>
NIFI大数据进阶_FlowFile生成器_GenerateFlowFile处理器_ReplaceText处理器_实际操作---大数据之Nifi工作笔记0020
查看>>